NAME

smacqg-embed — Embedding libsmacq in applications

SYNOPSIS

#include <smacq.h>

DESCRIPTION

SMACAQ (the System for Modular Analysis and Continuous Queries) is an extensible component system for
analyzing streams of structured data. This manpage describes the API used by applications that wish to use
this system.

smacq_graph * smacq_build_pipeline(
int argc,
char ** argv);

Given an argument vector in the typical format, parse those arguments and create and return a data-flow
graph. An argument of "I" is used to delimit modules in the pipeline.

smacq_graph * smacq_build_query(
dts_environment *,
int argc,
char ** argv);

Given an argument vector in the typical format, parse those arguments according to the SMACQ query lan-
guage described in smacq(1) as a single string and create and return a data-flow graph.

smacq_graph * smacq_start(
smacq_graph * graph,
enum smacq_scheduler,
dts_environment * tenv);

Given the specified data-flow graph, instantiate the modules and begin the scheduler. Possible scheduler
values are ITERATIVE, RECURSIVE, and THREADED. In the case of RECURSIVE or THREADED,
smacq_start() will never return. In the case of ITERATIVE, the scheduler must be repeatedly called using
the following smacq_sched_iterative() function.

If tenv is NULL, a new type environment will automatically be created. If dts_objects are to be passed
between data-flow graphs, the same type environment must be used by those graphs.

int smacq_sched_iterative(
smacq_graph * graph,
const dts_object * data_in,
dts_object ** data_out,
struct runq ** rungq,
int produce_first);

Execute the iterative scheduler until one data object is produced, or the system has terminated itself.

If data is produced, a pointer to it will be stored in data_out. If the return value is 0O, then
smacq_sched_iterative() should not be called again.

If the caller wishes to inject data into the graph, a non-null data_in argument should be used.

The Boolean produce_first argument specifies that the head node of the graph can produce data when more
is needed.

On the first call, the state argument should be a pointer to a void * initialized to NULL.

int smacq_sched_iterative_shutdown(
smacq_graph * graph,
struct runq ** runq);

SEE ALSO

smacqp(1), smacq-modules(3)

