NAME

smacq-modules - pipeline module programming guide

SYNOPSIS

#include <smacq.h>

Each module must provide a statically defined structure of type struct smacq_functions named smacq_mod-
ule_table such as the following:

struct smacq_functions smacq_module_table =

{
produce: &smacq_module_produce,
consume: &smacq_module_consume,
init: &smacq_module_init,
shutdown: &smacq_module_shutdown,
algebra: {vector:1, boolean: 1, demux: 1}

By convention, the referenced functions also include the name of the module. The API for each function is
as follows:

static smacq_result smacq_module_init(struct smacq_init * context);

static smacq_result smacq_module_consume(void * state, const dts_object *, int * outchan);

static smacq_result smacq_module_produce(void * state, const dts_object **, int * outchan);

static smacq_result smacq_module_shutdown(void * state);

The algebra element is optional and is used only by the dataflow optimizer. The following elements of the
algebra structure are as follows: Vector specifies that the module can be used with a single input and a sin-
gle output, or can be used with a vector of sets of arguments separated by semicolons and a corresponding
vector of output channels. Boolean specifies that the module merely filters out some data and can be
reordered in the dataflow by an optimizer. Demux specifies that the module demultiplexes output data
among multiple output chanels. If a demux module fails to set the demux bit, then the optimizer may pro-

duce disfunctional output.

static struct smacq_options smacq_options|[];

DESCRIPTION

LANL

SMACQ(1) is an extensible component system for analyzing streams of structured data. This manpage
describes the programming API for creating pipeline modules. Type modules are documented separately in
dts-types(3).

This document describes the programming interface used by authors of dataflow modules. These modules
are dynamically loaded and may be instantiated multiple times. Global and static variables are therefore
deprecated for most cases.

Each module must declare a smacq_module_table structure of type struct smacq_functions referring to
static functions described below:

The init function is called to initialize a new instantiate of a module. The return value is a module exit

$Date: 2003/10/23 23:06:15 $ 1

code, with 0 indicating no error. All parameters are passed in a single structure:

struct smacq_init {
int isfirst;
int islast;
char ** argv;
int argc;
smacq_environment * env;
void * state;
smacq_graph * self;

};

If any per-instantiation storage is required, it should be allocated in init and returned in the state parameter.
The env element should be saved and passed to any library functions that require an argument of type
smacq_environment. Arguments to the module are passed in standard argv, argc form. This structure will
be reused after init returns, so anything you wish to save out of it must be copied.

The smacq_produce() function is called to output data from the module. It is passed the instantiation’s
state variable and a pointer in which to store a pointer to a new data object. The return code should be
SMACQ_PASS for success, SMACQ_END if there is no more data to be produced (ever), or
SMACQ_ERROR in case of error. If there is more data to be produced, the result should be
SMACQ_PASSISMACQ_PRODUCE. Produce is called for the first module in a pipeline, as well as right
before a shutdown. Other than that, it is only called if the previous call to the mdoule (smacq_consume() or
smacq_produce()) returned SMACQ_PRODUCE or SMACQ_CANPRODUCE. SMACQ_PRODUCE
requires that smacq_produce() be called before another consume, while SMACQ_CANPRODUCE may or
may not trigger an immediate call to smacq_produce().

The smacq_consume() function is called when there is new data for a module to process. The return value
signals what should be done with the data. The SMACQ_FREE value says that the data object no longer
needed. SMACQ_PASS specifies that the structure should also be passed to the next module (if there is
one) in the pipeline. SMACQ_ERROR specifies that there was a fatal error consuming the packet.
SMACQ_PRODUCE signals that smacq_produce() must be called before smacq_consume() can be called
again. SMACQ_CANPRODUCE says that smacq_produce() will return data, but does not have to be
called for smacq_consume() (presumably your module is doing some kind of buffering in this case).

Both smacq_consume and smacq_produce() may fill in the outchan parameter if they wish to limit the
flow of data to a specific child in the data-flow graph. Otherwise, the default value of -1 will cause data to
go to all children.

The smacq_shutdown() function is called when there is no more data to process. It is responsible for free-
ing and resources used by the module. The return value is an exit code, with 0 indicating no error.

LIBRARY

LANL

See the dts(3) documentation for information on using dts_object objects.

int smacq_getoptsbyname(int arge, char ** argv, int * argc_left, char *** argv_left, struct
smacq_options * options, struct smacq_optval * optvals)
Parse the argv argument vector according to the legal options specified in the options array and
store the values in the memory locations pointed to by the optvals array. Each array is terminated
with a structure with a NULL name.

$Date: 2003/10/23 23:06:15 $ 2

struct smacq_options {
char * name;
smacq_opt default_value;
char * description;
smacq_opt_type type;
int flags;

b

struct smacq_optval {
char * name;
smacq_opt * location;

};

Valid types are: SMACQ_OPT _TYPE_INT, SMACQ_OPT_TYPE_USHORT,
SMACQ_OPT_TYPE_TIMEVAL, SMACQ_OPT_TYPE_UINT32, SMACQ_OPT_TYPE_BYTES,
SMACQ_OPT_TYPE_STRING, SMACQ_OPT_TYPE_UBYTE, SMACQ_OPT_TYPE_DOUBLE,
SMACQ_OPT_TYPE_BOOLEAN

OUTPUT QUEUES

It is often necessary for modules to queue data objects for output. The following routines enqueue and
dequeue objects. The queue is a struct smacq_outputq * and is initialized to NULL.

void smacq_produce_enqueue(struct smacq_outputq ** qp, const dts_object * o, int outchan)

smacq_result smacq_produce_dequeue(struct smacq_outputq ** qp, const dts_object ** o, int *
outchan)

smacq_result smacq_produce_canproduce(struct smacq_outputq ** qp)

HASH TABLES

It is convenient to use iovec hash tables in DTS modules. See the bytehash(3) manpage for more informa-
tion.

THREAD SHIM

LANL

The native module API described above is based on event-driven callbacks. However, a module can instead
have its own thread and a read/write API from a while loop. (Note that a module thread may be imple-
mented as a non-preemptive co-routine). To use a thread, the module function table should be initialized as
follows:

struct smacq_functions smacq_module_table = SMACQ_THREADED_MODULE(smacq_mod-
ule_loop)

The smacq_module_loop function can use the following functions:

const dts_object * smacq_read(struct smacq_init * context)

Returns a dts_object or NULL if there are no more objects to be read the loop should return.

$Date: 2003/10/23 23:06:15 $ 3

void smacq_write(struct state * state, dts_object * datum, int outchan)

void smacq_decision(struct smacq_init * context, const dts_object * datum, smacq_result result)

int smacq_flush(struct smacq_init * context)

Returns 0 normally, or 1 when no more objects can be written and the caller should return.

DYNAMIC ARRAYS
void darray_init(struct darray * darray, int max_hint)

Initialize the dynamic array based on the hint specifying the maximum number of elements
expected.

void * darray_get(struct darray * darray, int element)

Return the specified elment of the array.

void darray_set(struct darray * darray, unsigned int element, void * value)

Set the specified element of the array to the given value.

void darray_free(struct darray * darray)

Free all data associated with the array.

SEE ALSO
smacq(1), dts(3) bytehash(3)

LANL $Date: 2003/10/23 23:06:15 $ 4

