
smacq(1) smacq(1)

NAME
smacq — System for Modular Analysis and Continuous Queries

DESCRIPTION
The System for Modular Analysis and Continuous Queries (SMACQ) is an extensible component system

for analyzing streams of structured data. This manpage describes the modules included with the system by

default.

These modules are used by SMACQ’s command-line utilities smacqp(1) and smacqp(1) as well as a C

API described in smacq-embed(3).

The function modules included in the system are described in the following sections: I/O, Boolean, Anno-

tation, and Miscellaneous Analysis functions.

QUERY SYNTAX
Smacq queries are specified using the following SQL-like grammer:

query : action from [WHERE boolean] [GROUP BY args [HAVING boolean]]

| action [WHERE boolean]

| WHERE boolean

| query ’|’ action [WHERE boolean] [GROUP BY args [HAVING boolean]]

action : function args

| function (args)

| (query)

| (parenquery + parenquery)

parenquery : (query)

| function (args)

| function

from : FROM action [from]

Arguments can be given in a space separated list or a comma separated list. Any argument can be followed

by the phrase "AS alias" to be given the specified alias.

argument: word

| function (args)

| ’[’ expression ’]’

boolean : (boolean)

| boolean AND boolean

| boolean OR boolean

| NOT boolean

| operand

| subexpression op subexpression

| function (args)

;

INPUT/OUTPUT FUNCTIONS

1

smacq(1) smacq(1)

Print

print [-x] [-v] [-B] [-d delimiter] fields ...

Print the specified fields for every record that has them If the -v option is given, then warnings are printed

when fields aren’t present, and field values are preceded by the field name. If -x option is given, fields are

surrounded with XML-style tags. If the -B option is specified, then output is not buffered (output is flushed

after each record). Fields are separated by a delimiter string which can be specified by -d and defaults to

TAB.

Tabular Input

tabularinput [-d delimiter] [-f filename] [field [:type] ...]

Read records from STDIN by default, or a filename specified with the -f option, one per line, with fields

delimited by TAB or an alterate delimiter specified by -d. If field names are specified, data columns are

assigned those names sequentially. If no field names are specified, or there are more columns that field

names, unnamed fields are named numericaly starting at 1.

Field types can be specified by appending a colon and the type name to the end of the field name. If no

type is sepecified for a field, it is treated as a double if possible, or a string otherwise.

Packet Capture

pcaplive [-i interface] [-s snaplen] [-p] [filter ...]

The pcaplive module reads packets from a network interfaces using libpcap. It can only be used at the

beginning of a pipeline. Root privileges are typically required to run this module.

The -i option specifies an interface to listen on (default is any). The -s option specifies the maximum num-

ber of bytes per packet to capture (default is 68). The -p specifies that the interface should NOT be placed

in promiscuous mode.

An optional filter string is a BPF filter string (see tcpdump(1)).

Packet Trace File

pcapfile filename ...

pcapfile -w filename [-l] [-s megabytes]

The pcapfile module either reads from or writes to a tcpdump-style, libpcap packet trace file. If the module

is at the beginning of a pipeline, it reads from a file. Otherwise it writes data to a file.

When reading, one or more files must be specified. Use - for stdin. Input files that are compressed with

gzip are supported automatically. If the -l option is specified then files are read from STDIN instead of the

arguments.

When writing, a single output file must be specified with -w.

The -s option specifies the maximum file size (in megabytes) for output files. If specified, the output file

will have a two-digit suffix number appended and output will be split between as many files as necessary.

cflowd Raw Flow File

cflow filename ... [-l]

The cflow module reads from a raw flow file as created by cflowd. One or more files must be specified.

Use - for stdin. Input files that are compressed with gzip are supported automatically. If the -l option is

2

smacq(1) smacq(1)

specified then files are read from STDIN instead of the arguments.

Socket

socket [-p port] [-h host] [-d]

The socket module is used to send records across the network to another instantiation of the socket module.

It can be used in two different ways: as a producer who receives data from the network, or as a consumer

that writes data to a network. If the module is at the beginning of a pipeline, it is assumed to be a server.

Otherwise it is a consumer that writes data to the network.

The -h and -p options specify a host and port, respectively. The host option is required for a consumer.

The default port is 3000.

The -d option is only valid in the server context. If specified, the module will continue to accept new con-

nections forever and will never exit. Without this option, the server will accept a single connection, process

it until it closes, and then terminate.

BOOLEAN FUNCTIONS

Boolean functions immediately either filter-out or pass-on each data object they are given.

IP Address Mask Lookup

iplookupfield

The "addr/cidr" argument is a CIDR netmask. An object is filtered out if and only if the specified field does

not exist or does not match the given netmask.

Unlike the mask module, this module uses an efficient Patricia Trie to efficiently lookups in large vectors of

masks.

IP Address Mask

maskfield [!]addr/cidr

The "addr/cidr" argument is a CIDR netmask. If the mask size is not specified, 32 is assumed. An object is

filtered out if and only if the specified field does not exist or does not match the given netmask. If the

address begins with a ’!’, then the logic is reversed and the object is filtered out if the field does match the

netmask.

See also the iplookup module.

Substring

substr [field] string [; string ...]

Search for each byte string in the specified field, or in the whole data object if no field is given. If multiple

strings are given, then each string corresponds to an output channel, and the object will be output only on

the channel(s) that match.

Filter

filter field [[<=>] value]

Filter out all objects in the stream that do not satisfy all of the specified criteria. Expressions can be arbi-

trarily complex and include AND and OR statements and parentheses for grouping.

3

smacq(1) smacq(1)

This is the select (sigma) operation from relational algebra ("where" in SQL).

Unique Filter

uniq [-m megabytes] fields ...

Treat the specified field(s) as a tuple and filter out all occurrences of duplicate values of that tuple.

The -m option specifies that a probabilistic algorithm using a fixed amount of memory (specified in

megabytes) should be employed. Some records may be mistakenly filtered, but some large datasets cannot

be processed with a perfect algorithm.

Top

top [-m megabytes] [-r deviation] fields ...

Treat the specified field(s) as a tuple and count the number of occurrences of each values of that tuple. Fil-

ter out all records except those whose occurrence deviates from the average by more than a factor of devia-

tion. If no -r option is specified, the default deviation threshold is 1.

If -m is specified, then probabilistic counters are used, consuming a max of megabytes memory, at the

expense of some records not being filtered even though they’re value is rare.

It is often useful to follow this module with uniq in order to get exact counts for all records that pass this

filter.

Head

head number

Pass the first number records through and then end the pipeline. Those records will be processed by all

subsequent modules in the pipeline and the program will then terminate.

ANNOTATION FUNCTIONS

An annotation function always adds a field to every data object and the name of that field is identical to the

name of the function.

Clock

clock [-t seconds] field

The clock module is used to bin input data into discrete clock periods. Each object is annotated with a

clock field containing the numerical value of the current clock. The current clock value is determined by

keeping track of the largest value seen for the specified field (presumably a time) and dividing that value by

the optional time period, which defaults to 1. The input is assumed to be sorted in increasing order.

Constant Annotation

const string [field]

Annotate each object with a field containing the specified string constant. If a field name is specified, it will

be used. Otherwise, the name will be "const".

Delta

delta xfield

For each data object seen, compute the delta from the previous x field to this current xfield. The data object

is annotate with a "delta" field of type "double" containing the result. The x field must be convertable to

4

smacq(1) smacq(1)

doubles as well.

Derivative

derivative yfield xfield

For each data object seen, compute the derivative of the y field with respect to the x field between this point

and the last object seen. The data object is annotate with a "derivative" field of type "double" containing

the result. The x and y fields must be convertable to doubles as well.

Flow ID

flowid [-t time] [-r] fields ...

Treat the specified field(s) as a tuple and assign a unique flow id number to each object based on the typle

value. The annotated field is called "flowid". All but the first packet will be filtered out.

The -r option specifies that the same flow id should be assigned to packets in the reverse direction. Sepa-

rate flow statistics will be kept for each direction.

The -t option specifies a number of seconds idle time before a flow is timed out. When it times out a

REFRESH record with the flows identifying fields (as specified in the arguments), the current time (time-

series) and the packet and byte counters ("packets", "packetsback", "bytes", "bytesout") and the "start" and

"finish" times.

MISCELLANEOUS ANALYSIS FUNCTIONS
Counter

count [-a] [-f countname] [-p] [fields ...]

If no fields are specified, simply count the number of records seen. If one or more fields are specified, treat

those fields as a tuple and count the number of occurrences of each value for that tuple.

Unless the "-p" flag is specified, then a double value named "probability" is annotated instead. The "-f" flag

can still be used to specify an alternate field name.

Normally an annotation is made to only the final object and all other objects are filtered out. However, if

the "-a" flag is given, then every object is passed and annotated with a running value.

Stateful Matching

dfa statefile

The DFA module takes a input file describing transitions in a state machine. Each line contains a current

state, a subsequent state, and a predicate for the transition between those states. The predicate is in normal

SMACQ syntax for a "where" clause. States named START and STOP are required. All other states can be

named with any non-whitespace word.

The DFA module will create multiple instantiations of the given state machine. However, a giv en input

object is used by at most 1 of those instantiations. When the DFA module receives an input object, any

existing state machines are checked for possible transitions that would be satisfied by the object. If none of

the transitions from the current state of that machine are matched, then that machine will remain in the cur-

rent state. After a machine does match and transition on an input, no other machines will receive that input.

If no existing machines can use the input, then transitions from the START state are checked. If the START

state can be left, then a new machine is created.

5

smacq(1) smacq(1)

Last

last [-t time] [fields ...]

If any fields are specified, treat those fields as a tuple and keep track of the last object seen with that tuple

value. After there is no more data, output the objet for each tuple value.

The -t option specifies, as a real number, the number of seconds between periodic updates. After the speci-

fied amount of time, the last object seen for each tuple value will be emitted (just as is done at the end of

the data stream). At the end of the update, an object of type "refresh" will be sent with a "timeseries" field

of type "timeval" containing the time. Note: Time is not the wall-clock time, but is instead the time stored

in the record in the "timeseries" field of type "timeval". The -t cannot be used with records that do not

have this field.

Discrete Probability Density Function

pdf

Assemble a stream of input records with "count" fields. When a "refresh" record is received or the data

flow ends, then use the "count" fields to calculate the fraction of the total that each record is responsible.

Attach this value as a "probability" field of type "double". calculate then use the

Project

project fields ...

Replace all objects in the input stream with new objects containing only the specified fields. This is the

project (Pi) operation from relational algebra ("select <fields>" in SQL).

Rename

rename oldfield newfield ...

Given a list of alternating old and new field names, make a copy of the old field with the new name. Com-

bined with the Project module, this can implement the rename (rho) operation from relational algebra ("as"

in SQL).

Entropy

entropy

This module expects a series of data objects with "probability" fields and computes the Shannon entropy

for that series. When the data stream ends or a "refresh" object is seen, it is assumed that every ocurring

value has been seen and the entropy for the series is calculated and added as an annotation of type double

to a refresh object. See the "last" module for more information on refresh objects.

Group-By

groupby fields ... -- query ...

Treat the specified field(s) as a tuple and instantiate the specified query for each tuple. If a record of type

"refresh" is received, then the pipeline for that tuple will be gracefully terminated.

Time Sort

fifodelay [-t time] [-i input-time-field] [-o output-time-field]

Sort a series of input records and output them sorted by an output time field that is specified with the -o

option and defaults to "timeseries". All records that are past the edge time are immediately updated. The

edge time is determined by the input time field (specified with the -i option and defaullting to "timseries")

and a time delay which is specified with the -t option which defaults to 0 seconds.

6

smacq(1) smacq(1)

SEE ALSO
smacqq(1), smacqp(1), dts(3), dts-modules(3), smacq-modules(3), smacq-embed(3)

7

