smacq(l1) smacq(1)

NAME
smacq — System for Modular Analysis and Continuous Queries

DESCRIPTION
The System for Modular Analysis and Continuous Queries (SMACQ) istansible component system
for analyzing streams of structured data. Users witn@lifarity of SQL will immediately be comfortable
using the basic features of the systafowever, there are additional object-relational and extensibility fea-
tures that are described b&loThis manpage describes the query syntax and the modules included with the
system by default, which are grouped into sections for I/O, Boolean, Annotation, and Miscellaneous Analy-
sis functions. Queries argeeuted using SMAQ’s cmmand-line utilitysmacqq(1) or the SMACQ C++
API.
The primary difference from standard relational databases is that data is not stored in preloadedttables, b
is instead produced by data source modubdso, the select operation does not automatically print fields.
If printable output is desired, use tiént command.

The folloving example prints the "srcip" and "dstip" fields from a stream of packets stored in a tcpdump-
format file named "/tmp/dump":

print srcip, dstip from pcapfile("/tmp/dump")
Nested queries are also supporteédr example:

print srcip, dstip from (uniq srcip, dstip from pcap-
file("/tmp/dump"))

When queries are nested deefig syntax described alman become compte Asa result, commas are
optional between arguments, and SMACQ also supports the | symbol used in Unix shells. The result is a
syntax much more familiar to Unix shell users. Thus the following queries ansleqtii

print srcip, dstip from (uniq srcip, dstip from pcap-
file("/tmp/dump"))

pcapfile "/tmp/dump"” | uniqg srcip dstip | print srcip dstip

"Where" clauses are supported for both boolean tests based on <, <=, >, >=, =, I=, or arbitrary filtering
functions.

print dstip from pcapfile("/tmp/dump") where srcip = 128.129.1.2
pcapfile /tmp/dump | where srcip = 128.129.1.2 | print dstip

print dstip from pcapfile("/tmp/dump") where mask(srcip,
128.129.0.0/16)

pcapfile /tmp/dump | mask srcip 128.129.0.0/16 | print dstip

Aliasing with "as" is supported: print —v dstip, sum(len) as totalbytes from
pcapfile("/tmp/dump™))

pcapfile /tmp/dump | print —v dstip sum(len) as totalbytes
Joins are supported as well:

print a.srcip, b.srcip from pcapfile("/tmp/dump"”) a, b where

smacq(l1) smacq(1)

a.srcip != b.srcip

When used with streams, joins requirgry large amounts of memoryrhe "until" term can be used to
define when elements can be remtbfrom the pool of possible values in a join:

print a.srcip, b.srcip from pcapfile("/tmp/dump”) a until
(new.a.ts > a.ts), b where a.srcip != b.srcip

Extended relational algebra pides aggrgae functions and the "group by" and "having" terms. This syn-
tax is supported, but with slightly different semantiEsr example, the following query auld behae &s it
would in SQL:

print dstip, sum(len) from pcapfile("/tmp/dump") group by dstip
pcapfile /tmp/dump | print dstip sum(len) group by dstip

but is dso the same as:
pcapfile /tmp/dump | groupby dstip —— sum len | print dstip sum

However the use of a function (such as "sum()") as one of the arguments will result in the "sum" module
processing the data before the "print" modwlemodule called in this way is expected to annotate the data
object with a field of the same name as the functibinus, the sum field will be part of the object from
now on. Thus,it can also be used in subsequemguarents. Inaddition, havever, the module can cause
other side-effects to the data. Finaflynctions can be used whether or not "group by" is used.

SMACQ is an extensible system that the user can add modules to. Sswaiteg(1l) manpage for a
detailed description of module®any modules tak flags which, lile dl arguments, can be separated with
commas or spaces:

print —v, srcip, dstip from pcapfile("/tmp/dump")

INPUT/OUTPUT FUNCTIONS
Print
print [-xX] [-v] [-B] [-d delimiteq [fields ...]

Print the specified fields forvery record that has them If the option is gven, then warnings are printed
when fields aret’present, and field values are preceded by the field ndme.option is gven, fields are
surrounded with XML-style tags. If th& option is specified, then output is nafffiered (output is flushed
after each record). Fields are separated by a delimiter string which can be specifiethtydefaults to
TAB. If no fields are specified, then all fields are printed.

Tabular Input
tabularinput [-d delimitef] [—f filenamé [field [:type] ...]

Read records from STDIN by default, or a filename specified withf toption, one per line, with fields
delimited by TAB or an alterate delimiter specified-by If field names are specified, data columns are
assigned those names sequentialfyno field names are specified, or there are more columns that field
names, unnamed fields are named numericaly starting at 1.

Field types can be specified by appending a colon and the type name to the end of the field name. If no
type is sepecified for a field, it is treated as a double if possible, or a string otherwise.

smacq(l1) smacq(1)

Packet Capture
pcaplive [-i interfacqd [—-sshaplef [-p] [filter ...]

The pcaplive module reads packets from a network interfaces using libpitagan only be used at the
beginning of a pipeline. Root privileges are typically required to run this module.

The-i option specifies an interface to listen on (defaudinig). The-soption specifies the maximum num-
ber of bytes per paekto capture (default is 68)'he -p specifies that the interface should NBe daced
in promiscuous mode.

An optional filter string is a BPF filter string (sepdump(1)).

Packet Capture Fle
pcapfile filename

pcapfile —w filenameg[-I] [-s megabytéds

The pcapfile module either reads from or writes to a tcpdump-style, libpcap packet trace file. If the module
is at the beginning of a pipeline, it reads from a file. Otherwise it writes data to a file.

When reading, one or more files must be speciflgske - for stdin. Input files that are compressed with
gzip are supported automaticallyf the-I option is specified then files are read from STDIN instead of the
arguments.

When writing, a single output file must be specified with

The -s option specifies the maximum file size (ingdytes) for output files. If specified, the output file
will have a wo-digit suffix number appended and output will be split between ag files as necessary.

cflowd Raw Flow File
cflow filename-I]

The cflow module reads from awaflow file as created by cfial. Oneor more files must be specified.
Use - for stdin. Input files that are compressed wghip are supported automaticallyf the -I option is
specified then files are read from STDIN instead of the arguments.

Socket
socket[-p port] [-hhos] [-d]

Thesocketmodule is used to send records across the network to another instantiatiosook#tenodule.

It can be used in twvdifferent ways: as a producer who reesidata from the network, or as a consumer
that writes data to a netrk. If the module is at the beginning of a pipeline, it is assumed to bea.serv
Otherwise it is a consumer that writes data to the network.

The -h and-p options specify a host and port, respetyi The host option is required for a consumer
The default port is 3000.

The-d option is only walid in the server conté If specified, the module will continue to acceproen-
nections foreer and will never exit. Without this option, the seev will accept a single connection, process
it until it closes, and then terminate.

smacq(l1) smacq(1)

BOOLEAN FUNCTIONS

Boolean functions immediately either filter-out or pass-on each data objgetehgven.

IP Address Mask Lookup
iplookup field

The "addr/cidr" agument is a CIDR netmask. An object is filtered out if and only if the specified field does
not exist or does not match the@i netmask.

Unlike the mask module, this module uses an efficiemti¢é?a Trie to efficiently lookups in large vectors of
masks.

IP Address Mask
mask field [!] addr/cidr

The "addr/cidr* argument is a CIDR netmask. If the mask size is not specified, 32 is asAnnobject is
filtered out if and only if the specified field does not exist or does not matchvérengimask. Ifthe
address begins with a '"", then the logic isersed and the object is filtered out if the field does match the
netmask.

See also the iplookup module.

Substring
substr [field] string[; string...]

Search for each byte string in the specified field, or in the whole data object if no figkhisl§multiple
strings are gien, then each string corresponds to an output channel, and the object will be output only on
the channel(s) that match.

Filter
filter boolean-expression

Do not specify this module; it is used internally foglaating boolean x@ressions that do not V& nore
optimal implementations. Use a "where" clause in your query instead; "where" will instantiate a "filter"
module only if necessary.

Unique Filter
unig [-m megabytés fields

Treat the specified field(s) as a tuple and filter out all occurrences of duplicate values of that tuple.

The -m option specifies that a probabilistic algorithm using a fixed amount of memory (specified in
megabytes) should be empled. Somaecords may be mistakenly filtered, but some large datasets cannot
be processed with a perfect algorithm.

Top
top [-m megabytds[-r deviatior] fields

Treat the specified field(s) as a tuple and count the number of occurrences afleeslofthat tupleFil-
ter out all records except those whose occurrence deviates fronethgeaby more than adtor ofdevia-
tion. If no-r option is specified, the default deviation threshold is 1.

If -m is specified, then probabilistic counters are used, consuming a nmggaibytesmemory at the

smacq(l1) smacq(1)

expense of some records not being filtereehghough they're value is rare.

It is often useful to foller this module withuniq in order to getact counts for all records that pass this
filter.

Head

head number

Pass the firsnumber records through and then end the pipeliii@ose records will be processed by all
subsequent modules in the pipeline and the program will then terminate.

ANNOTATION FUNCTIONS

An annotation function alays adds a field tovery data object and the name of that field is identical to the
name of the function.

Clock

clock[-t secondk field

The clock module is used to bin input data into discrete clock periods. Each object is annotated with a

clock field containing the numerical value of the current clock. The current cédek is determined by
keeping track of the largesaiue seen for the specified field (presumably a time) and dividing that value by
the optional time period, which defaults to 1. The input is assumed to be sorted in increasing order.

Constant Annotation

const[-t typqd [—f field] stringfield]

Annotate each object with a field containing the specified constant. The default field name is "const" and

the default type is "string".

Delta

delta xfield

For each data object seen, compute the delta from theopiex field to this current xfield. The data object
is annotate with adelta" field of type Houble" containing the result. The x field must be wenable to
doubles as well.

Derivative

derivative yfield xfield

For each data object seen, compute theuvdivie d the vy field with respect to the x field between this point
and the last object seen. The data object is annotate witbrizative" field of type ouble" containing
the result. The x and y fields must be wtable to doubles as well.

Div
div [—d divisor] [field]
The div module annotates each object with a field of type "int" and the nawie "Hhe field is computed
by dividing the speficied field by the specified divisor (or 1 byualéf Theresult is then truncatedSee
the "clock" module for similar functionality.

Flow 1D

flowid [-ttimg [-r] fields
Treat the specified field(s) as a tuple and assign a uniquédfllumber to each object based on the typle

smacq(l1) smacq(1)

vaue. Theannotated field is called "fiad". All but the first packet will be filtered out.

The -r option specifies that the samewlla should be assigned to packets in theerse direction.Sepa-
rate flav statistics will be kept for each direction.

The -t option specifies a number of seconds idle time beforevaifidimed out. When it times out a
REFRESH record with the flows identifying fields (as specified in the arguments), the current time (time-
series) and the packet and byte counters ("packets", éfshelck”, "bytes”, "bytesout") and the "start" and
"finish" times.

Now
now [—f field]

The nav module annotates each object with an object of type Véhéa struct timeal) with the gven
name, or "now" by default.

MISCELLANEOUS ANALYSIS FUNCTIONS
Counter
count[—-a] [-f countnamg [—p] [fields...]

If no fields are specified, simply count the number of records seen. If one or more fields are specified, treat
those fields as a tuple and count the number of occurrences of each value for that tuple.

Unless the "-p" flag is specified, then a douldki® named "probability” is annotated instead. The "-f"
flag can still be used to specify an alternate field name.

Normally an annotation is made to only the final object and all other objects are filterddowser, if
the "—-a" flag is gien, then gery object is passed and annotated with a running value.

Deskew
deskew[-s secondaryfiel[d[-b min] [-emaX [fields...]

The deskw nodule is designed to tala sream of in-order timeseries data where some of the tahey

are incorrect and outside a range of possiblaes. Thaange is specified with "-b" and "-eAny such

illegd values are replaced with the previous valid value in the stream. This operation is performed on the
specified field. If a second field is specified with "-s", then that field is adjusted by an equal amount.

Sort
sort [-r] [-b batchsizg [fields...]

Buffer-up the input datastream and output a sorted stream. If "=b" is not specified, no data will be output
until the input stream closes. If "=b n" is specified, then sorted data will be output/effen eecords.

Any fields that are specified thatvea'double" fields, will be sorted numericallll other fields will be
sorted byte by byte in their nati Sorage format.

The —r option specifies descending order instead of the default, ascending order.

Take
take [field]

This module outputs the object specified field g input object. For example, if an input stream con-
sists of objects with a "timestamp" field (and/ aamber of other fields), and "timestamp" is the specified

smacq(l1) smacq(1)

field name for take, then the output stream will consist of those timestamp fields.

This is similar to the "project" function, and the project operator in relational algebra (select in SQL),
except that a single object is returned rather than a tuple of values.

Stateful Matching
dfa statefile

The DA module tales a input file describing transitions in a state machine. Each line contains a current
state, a subsequent state, and a predicate for the transition between thos&lstgtesdicate is in normal
SMACQ syntax for a "where" clause. States namedlRFSTand STOP are required. All other states can be
named with ay non-whitespace word.

The DFA module will create multiple instantiations of thevgi gate machine.However, a gven input

object is used by at most 1 of those instantiatioMhen the DR module receies an nput object, ap

existing state machines are checked for possible transitions that would be satisfied by théf sigretof

the transitions from the current state of that machine are matched, then that machine will remain4n the cur
rent state. After a machine does match and transition on an input, no other machines vélltrecgiput.

If no existing machines can use the input, then transitions from tARB%tate are chedd. Ifthe SART

state can be left, then amenachine is created.

Last
last[-t timg [fields...]

If any fields are specified, treat those fields as a tuple @ep tkack of the last object seen with that tuple
value. Afterthere is no more data, output the objet for each tuple value.

The-t option specifies, as a real numktee number of seconds between periodic updates. After the speci-
fied amount of time, the last object seen for each tugdigewvill be emitted (just as is done at the end of
the data stream). At the end of the update, an object of tgfresh” will be sent with atimeseries field

of type 'timeval" containing the time. Note: Time is not the wall-clock time, but is instead the time stored
in the record in thetimeseries field of type timeval". The -t cannot be used with records that do not
have tis field.

Discrete Probability Density Function
pdf

Assemble a stream of input records with "count” fields. When a "refresh" record isdeaeihe data
flow ends, then use the "count" fields to calculate the fraction of the total that each record is responsible.
Attach this value as a "probability” field of type "double”. calculate then use the

Private Field Namespace
private

Return a n& object that shares the same dat#, s its own namespace for fields. The namespace is ini-
tially the same as the original, butmnéelds that are added arevate to the ne copy.

Project
project fields

Replace all objects in the input stream withvrabjects containing only the specified fields. This is the
project (Pi) operation from relational algebra ("select <fields>" in SQL).

smacq(l1) smacq(1)

Rename
rename oldfield newfield

Given a list of alternating old and mefield names, maka ©py of the old field with the ng@ name. Com-
bined with the Project module, this can implement the rename (rho) operation from relational algebra ("as"
in SQL).

Entropy
entropy

This module gpects a series of data objects wighidbability " fields and computes the Shannon entrop
for that series.When the data stream ends orrafresh” object is seen, it is assumed thaérg ocurring
value has been seen and the entrip the series is calculated and added as an annotation afdyp&

to a refresh object. See thast' module for more information orefresh objects.

Group-By
groupby fields —— query

Treat the specified field(s) as a tuple and instantiate the specified query for eaclf apézord of type
"refresh" is recaied, then the pipeline for that tuple will be gracefully terminated.

Time Sort
fifodelay [-t timg] [-i input-time-field [—o output-time-fielfl

Sort a series of input records and output them sorted by an output time field that is specified ‘with the
option and defaults to "timeseriesAll records that are past the edge time are immediately updatesl.
edge time is determined by the input time field (specified withithption and defaullting to "timseries")
and a time delay which is specified with the option which defaults to 0 seconds.

QUERY SYNTAX
SMACQ queries are specified using the following SQlke-ikammer:

query:

action from [alias, joins] [WHERE boolean] [GROUP BY args [HAVING boolean]]
| action [WHERE boolean]

| WHERE boolean

| query ' action [WHERE boolean] [GROUP BY args [HAVING boolean]]

action:

function args

| function (‘args)

| (query)

| (parenquery + parenquery)

joins:
[parenquery] alias [, joins]

parenquery:
(query)

| function (‘args)
| function

from:
FROM action [from]

smacq(l1) smacq(1)

Arguments can begn in a pace separated list or a comma separatedAisy. argument can be follwed
by the phrase "AS alias" to besgn the specified alias.

argument:

word

| function (‘args)
| ' expression]’

boolean:

(boolean)

| boolean AND boolean

| boolean OR boolean

| NOT boolean

| operand

| subexpression op subexpression
| function (‘args)

SEE ALSO
smacqql), DTS(3), SmacqGraph(3)

